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extends over 78 percent of the wing span.  Engines & Systems' LF507 engines are on the aircraft,
and therefore sufficient information is available to model the aircraft and engine geometry.

For purposes of the Raynoise® studies and new wing reflection model predictions, the aircraft
is modeled as simply a wing/engine combination.  The fuselage and empennage are not included.

The certification flight profiles were used for take-off, sideline, and approach flight
conditions.  Analyses were performed for configurations with and without flaps, as appropriate to
the flight condition.  The primary flight conditions and wing configurations analyzed were as
follows:

• Cutback Take-Off:  Wing with Flaps Retracted
• Sideline:  Wing with Flaps Retracted
• Approach:  Wing with Full Flaps (33 Degrees)

Figure 1.  The RJ100 Regional Transport Served as the Basis for the Wing/Engine
Configuration Used in the Wing Reflection Studies.
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Figure 2.  Outboard LF507 Engine on RJ100 Aircraft.
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Figure 3.  Raynoise® Model of the RJ100 Outboard Engine With Single-Element Wing.
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Figure 4.  Raynoise® Model of the RJ100 Outboard Engine With Double-Element Wing.
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Figure 5.  Raynoise® Model of the RJ100 Inboard and Outboard Engines, With Single-
Element Wing.
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Figure 6.  Raynoise® Model of the RJ100 Outboard Engine Using a Distributed Source, With
Single-Element Wing.
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Figure 7.  Ground Plane for All Predictions, Aircraft at Altitude of 394 Ft.
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Aircraft Heading

Figure 8.  Noise Contours for Engine-Only Configuration, With Point Source.
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Figure 9.  Engine With Single-Element Wing:  Noise Contours, Noise Deltas From Engine-
Only Configuration.
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Figure 10.  Engine With Single-Element Wing and Flaps:  Noise Contours, Noise Deltas From
Engine-Only Configuration.
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Figure 11.  Engine With Single-Element Wing, Flaps, and Absorptive Pylon:  Noise Contours,
Noise Deltas from Engine-Only Configuration.
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Figure 12.  Engine With Double-Element Wing:  Noise Contours, Noise Deltas From Engine-
Only Configuration.
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Figure 13.  Engine With Double-Element Wing, Flaps, and Absorptive Pylon:  Noise
Contours, Noise Deltas From Engine-Only Configuration.
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Figure 14.  Inboard and Outboard Engines With Single-Element Wing, Flaps: Noise
Contours, Noise Deltas From Engine-Only Configuration.
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Figure 15.  Differences Between Inboard + Outboard Engines and Outboard + 3 dB, Single-
Element Wing, Flaps.
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Aircraft Heading

Figure 16.  Noise Contours for Engine Only, 12-Point Ring Source.
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Figure 17.  Outboard Engine, 12-Point Source, Single-Element Wing: Noise Contours, Noise
Deltas from Engine-Only Configuration.
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Figure 18.  Outboard Engine, 12-Point Source, Single-Element Wing and Flaps: Noise
Contours, Noise Deltas From Engine-Only Configuration.
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Figure 19.  Outboard Engine, 12-Point Source, Single-Element Wing, Flaps, Absorptive
Pylon: Noise Contours, Noise Deltas From Engine-Only Configuration.
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Figure 20.  Double Reflections and the Locations Influenced by Them, Single Element Wing
and Flaps, Point Source.
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Figure 21.  Comparison of Wing-Flap Reflections With and Without Double Reflections,
Single-Element Wing and Flaps, Point Source.
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Figure 23.  Point Source Model for Fan Bypass Noise at Fan Duct Exit.
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Figure 24.  The Directivity Angle of the Reflected Ray May Differ From That of the Directly-
Radiated Ray.
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Figure 25.  A 2-D Model of a Typical Wing/Flap System, With Fully-Extended Flaps,
Illustrates the Occurrence of Multiple Reflections From a Single Ray.
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Figure 26.  A Reflected Ray Experiences Refraction As It Passes Through the Exhaust Jet.
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Figure 27.  Flowchart for the Wing Reflection Algorithm.



38

+ZL
+YL

+XL

TLE

RLE
RTE

TTE

(1)

(3)
(2)

Figure 28.  The Reflecting Panel Geometry Is Defined in Terms of Panel Boundary Points.
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Figure 29.  Orientation of the Image Source Point Relative to the Original Source and the
Reflecting Panel.
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Figure 30.  To Determine if a Reflection Will Occur, the Location of the Reflection Point W
Must Be Determined Relative to the Wing Panel.
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Figure 31.  The Path Length of the Reflected Ray Is Equivalent to the Distance Between the
Receiver, R, and the Image Source, IS.
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Figure 32.  The Source Strength of the Reflected Ray Is a Function of the Directivity Angle,
Which Can Differ From that of the Direct Ray.
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Figure 33.  Effect of Wing Reflection at Cutback Takeoff Conditions for the Wing/Engine
Configuration of the Regional Transport Test Case.
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Figure 34.  Effect of Wing Reflection at Sideline Conditions for the Wing/Engine
Configuration of the Regional Transport Test Case.
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Figure 35.  Effect of Wing Reflection at Approach Conditions for the Wing/Engine
Configuration of the Regional Transport Test Case.
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Figure 36.  Impact of Wing Reflection on Noise for the Approach Flight Profile With the
Wing/Engine Configuration of the Regional Transport Test Case.
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METHOD

Wing Geometry

The wing (flap or flap tab) configuration is described in a local coordinate system with the
origin positioned at the engine inlet (Point 1), as shown in Figure 1 for wing shielding.  The origin
of the local coordinate system for wing reflection is at the engine exhaust as shown in Figure 2.
The local coordinate system origin is assumed to be the aircraft location specified in the body
coordinate system (see the Geometry Module) for the propagation calculation.  The user must
specify the coordinates at the wing root leading edge, root trailing edge, tip leading edge, and tip
trailing edge, relative to the location of the local coordinate system origin.

Then, the local origin and wing coordinates are transformed into a global coordinate system
consistent with the observer location on the ground (Point O).  This transformation must take into
account the aircraft attitude and position at the particular time of the observation.

Xlocal

YlocalZlocal

POINT 1
(Engine Inlet)

POINT O
(Ground Observer)

Ground Plane

X

Y

Z Global Coordinate System

TTE

RTE

TLE

RLE

POINT I
(Wing Surface Intersection Point)

Figure 1.  Coordinate System That Defines the Wing Geometry and Typical Sound
Propagation Vector For Wing Shielding.
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Figure 2.  The Reflecting Panel Geometry Is Defined in Terms of Panel Boundary Points
Similar to Wing Shielding.

Wing Shielding Model

The location of the point representing the intersection of the line between the engine inlet
(Point 1) and the observer on the ground (Point O) with the plane of the wing must be computed.
Figure 3 illustrates the configuration of line 1-O and the wing plane, with the intersection point
(Point I ).  The coordinates of the intersection point are determined by solving a set of three
equations in three unknowns ( xI , yI , and zI ).  Two equations are produced by the 2-point form
for the equation for the line 1-O:

x x

x x

y y

y y
I O

O

I O

O

-

-
-

-

-
=

1 1
0 (1)

x x

x x

z z

z z
I O

O

I O

O

-

-
-

-

-
=

1 1
0 (2)

The other equation comes from the 3-point form of the equation for the wing plane:

x x y y z z

x x y y z z

x x y y z z

I RLE I RLE I RLE

RTE RLE RTE RLE RTE RLE

TLE RLE TLE RLE TLE RLE

- - -

- - -

- - -

= 0 (3)
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From these three distances, the difference in source-receiver path length between the direct
and diffracted sound fields may be computed:

D = (d1W + dWO) - d1O (7)

where D > 0 when Point I  lies on the wing surface, D = 0 when Point I  lies on the wing boundary
edge, and D < 0 when Point I  is beyond the wing surface.

POINT 1
(Engine Inlet)

TTE

RTE

TLE

RLE

POINT I
(Wing Surface Intersection Point)

WTE

WTIP

WLE

Figure 3.  The Point That Is Nearest To The Ray Intersection Point With The Wing Is
Determined.
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(Engine Inlet)
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(Ground Observer)

TTE
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POINT I
(Wing Surface Intersection Point)

WTE
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Figure 4.  The Differences In Path Length Between The Direct And Diffracted Sound Rays
Are Used To Calculate The Wing Shielding.
























































































	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

